Native CYP2C11: heterologous expression in Saccharomyces cerevisiae reveals a role for vacuolar proteases rather than the proteasome system in the degradation of this endoplasmic reticulum protein.
نویسندگان
چکیده
Cytochromes P450 (P450s) are hemoprotein enzymes committed to the metabolism of chemically diverse endo- and xenobiotics. They are anchored to the endoplasmic reticulum (ER) membrane with the bulk of their catalytic domain exposed to the cytosol, and thus they constitute excellent examples of integral monotopic ER proteins. Physiologically they are known to turn over asynchronously, but the determinants that trigger their proteolytic disposal and the pathways for such cellular disposal are not well defined. We recently showed that CYP3A4, the dominant human liver drug-metabolizing enzyme, and its rat liver orthologs undergo ubiquitin-dependent 26S proteasomal degradation not only after suicide inactivation, but also when CYP3A4 is expressed in Saccharomyces cerevisiae, presumably in its "native" form. The latter findings, obtained by the use of strains either with compromised proteasomal degradation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) or deficient in ubiquitin-conjugating enzymes (Ubc; UBC), revealed that this native monotopic P450 enzyme, in common with the polytopic HMGR, required the function of certain HRD (HMGR degradation) and UBC genes. In this study, we examined the degradation of CYP2C11, a male rat liver-specific P450, by heterologous expression in S. cerevisiae under comparable conditions. We report that unlike CYP3A4 and HMGR, the degradation of CYP2C11 in S. cerevisiae is independent of either HRD or UBC gene function, but it is largely dependent on vacuolar (lysosomal) proteolysis. These findings with two monotopic ER hemoproteins, CYP2C11 and CYP3A4, and the polytopic ER protein HMGR attest to the remarkable mechanistic diversity of cellular proteolytic disposal of ER proteins.
منابع مشابه
Vacuolar degradation of rat liver CYP2B1 in Saccharomyces cerevisiae: further validation of the yeast model and structural implications for the degradation of mammalian endoplasmic reticulum P450 proteins.
Mammalian hepatic cytochromes P450 (P450s) are endoplasmic reticulum (ER)-anchored hemoproteins with highly variable half-lives. CYP3A4, the dominant human liver drug-metabolizing enzyme, and its rat liver orthologs undergo ubiquitin (Ub)-dependent 26S proteasomal degradation after suicide inactivation or after heterologous expression in Saccharomyces cerevisiae. In contrast, rat liver CYP2C11 ...
متن کاملDegradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system.
The endoplasmic reticulum quality control (ERQC) system retains and degrades soluble and membrane proteins that misfold or fail to assemble. Vph1p is the 100 kDa membrane subunit of the yeast Saccharomyces cerevisiae V-ATPase, which together with other subunits, assembles into the V-ATPase in the ER, requiring the ER resident protein Vma22p. In vma22Delta cells, Vph1p remains an integral membra...
متن کاملProteasomal degradation of Rpn4 in Saccharomyces cerevisiae is critical for cell viability under stressed conditions.
The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback loop in which the transcription factor Rpn4 induces the proteasome genes and is rapidly degraded by the assembled proteasome. In addition to the proteasome genes, Rpn4 regulates numerous other genes involved in a wide range of cellular pathways. Therefore, the Rpn4-proteasome negative feedback circuit not...
متن کاملGenetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation.
The endoplasmic reticulum contains a quality control system that subjects misfolded or unassembled secretory proteins to rapid degradation via the cytosolic ubiquitin proteasome system. This requires retrograde protein transport from the endoplasmic reticulum back to the cytosol. The Sec61 pore, the central component of the protein import channel into the endoplasmic reticulum, was identified a...
متن کاملRetention of a co-translational translocated mutant protein of carboxypeptidase Y of Saccharomyces cerevisiae in endoplasmic reticulum.
Co-translational translocation of Saccharomyces cerevisiae vacuolar glycoprotein carboxypeptidase Y (CpY) was highly efficient when studied with an in vivo and in vitro homologous system, comparison of limited proteolytic cleavage of immunoprecipitated translational products of CpY and subcellular localisation of a mutant CpY. The efficient segregation of CpY mRNA in highly purified fractions o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 61 5 شماره
صفحات -
تاریخ انتشار 2002